Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 368: 344-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417559

RESUMO

Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.


Assuntos
Coagulação Sanguínea , Polímeros , Humanos , Polímeros/química , Heparina/química , Anticoagulantes/farmacologia , Estireno
2.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396842

RESUMO

Type 2 diabetes is characterized by hyperglycemia and a relative loss of ß-cell function. Our research investigated the antidiabetic potential of betulin, a pentacyclic triterpenoid found primarily in birch bark and, intriguingly, in a few marine organisms. Betulin has been shown to possess diverse biological activities, including antioxidant and antidiabetic activities; however, no studies have fully explored the effects of betulin on the pancreas and pancreatic islets. In this study, we investigated the effect of betulin on streptozotocin-nicotinamide (STZ)-induced diabetes in female Wistar rats. Betulin was prepared as an emulsion, and intragastric treatments were administered at doses of 20 and 50 mg/kg for 28 days. The effect of treatment was assessed by analyzing glucose parameters such as fasting blood glucose, hemoglobin A1C, and glucose tolerance; hepatic and renal biomarkers; lipid peroxidation; antioxidant enzymes; immunohistochemical analysis; and hematological indices. Administration of betulin improved the glycemic response and decreased α-amylase activity in diabetic rats, although insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) scores remained unchanged. Furthermore, betulin lowered the levels of hepatic biomarkers (aspartate aminotransferase, alanine aminotransferase, and alpha-amylase activities) and renal biomarkers (urea and creatine), in addition to improving glutathione levels and preventing the elevation of lipid peroxidation in diabetic animals. We also found that betulin promoted the regeneration of ß-cells in a dose-dependent manner but did not have toxic effects on the pancreas. In conclusion, betulin at a dose of 50 mg/kg exerts a pronounced protective effect against cytolysis, diabetic nephropathy, and damage to the acinar pancreas and may be a potential treatment option for diabetes.


Assuntos
Ácido Betulínico , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Feminino , Animais , Antioxidantes/uso terapêutico , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos Wistar , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Glicemia , Extratos Vegetais/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Glucose/efeitos adversos , Biomarcadores , alfa-Amilases
3.
Biomimetics (Basel) ; 9(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248618

RESUMO

We have designed and synthesized a series of bioinspired pyrano[2,3-f]coumarin-based Calanolide A analogs with anti-HIV activity. The design of these new calanolide analogs involved incorporating nitrogen heterocycles or aromatic groups in lieu of ring C, effectively mimicking and preserving their bioactive properties. Three directions for the synthesis were explored: reaction of 5-hydroxy-2,2-dimethyl-10-propyl-2H,8H-pyrano[2,3-f]chromen-8-one with (i) 1,2,4-triazines, (ii) sulfonylation followed by Suzuki cross-coupling with (het)aryl boronic acids, and (iii) aminomethylation by Mannich reaction. Antiviral assay of the synthesized compounds showed that compound 4 has moderate activity against HIV-1 on enzymes and poor activity on the cell model. A molecular docking study demonstrates a good correlation between in silico and in vitro HIV-1 reverse transcriptase (RT) activity of the compounds when docked to the nonnucleoside RT inhibitor binding site, and alternative binding modes of the considered analogs of Calanolide A were established.

4.
Biomolecules ; 13(7)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509141

RESUMO

Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.


Assuntos
Triterpenos , Humanos , Triterpenos/farmacologia , Ácido Betulínico , Citocinas/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769163

RESUMO

This review summarizes and systematizes the literature on the anti-HIV activity of plant coumarins with emphasis on isolation and the mechanism of their antiviral action. This review summarizes the information on the anti-HIV properties of simple coumarins as well as annulated furano- and pyranocoumarins and shows that coumarins of plant origin can act by several mechanisms: inhibition of HIV reverse transcriptase and integrase, inhibition of cellular factors that regulate HIV-1 replication, and transmission of viral particles from infected macrophages to healthy ones. It is important to note that some pyranocoumarins are able to act through several mechanisms or bind to several sites, which ensures the resistance of these compounds to HIV mutations. Here we review the last two decades of research on the anti-HIV activity of naturally occurring coumarins.


Assuntos
Fármacos Anti-HIV , HIV-1 , Piranocumarinas , Cumarínicos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Antivirais/farmacologia , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV
6.
Nat Commun ; 12(1): 4967, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426576

RESUMO

Today's smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.


Assuntos
Técnicas Biossensoriais , Sangue/metabolismo , Capacitância Elétrica , Nanopartículas/química , Animais , Cães , Eletroquímica , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Células Madin Darby de Rim Canino , Temperatura
7.
Int J Biol Macromol ; 182: 2144-2150, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087306

RESUMO

Glial-cell-line-derived neurotrophic factor (GDNF) is a protein that has therapeutic potential in the treatment of Parkinson's disease and other neurodegenerative diseases. The activity of GDNF is highly dependent on the interaction with sulfated glycans which bind at the N-terminus consisting of 19 residues. Herein, we studied the influence of different glycosaminoglycan (i.e., glycan; GAG) molecules on the conformation of a GDNF-derived peptide (GAG binding motif, sixteen amino acid residues at the N-terminus) using both experimental and theoretical studies. The GAG molecules employed in this study are heparin, heparan sulfate, hyaluronic acid, and sulfated hyaluronic acid. Circular dichroism spectroscopy was employed to detect conformational changes induced by the GAG molecules; molecular dynamics simulation studies were performed to support the experimental results. Our results revealed that the sulfated GAG molecules bind strongly with GDNF peptide and induce alpha-helical structure in the peptide to some extent.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Heparina/farmacologia , Heparitina Sulfato/farmacologia , Ácido Hialurônico/farmacologia , Simulação de Dinâmica Molecular , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Heparina/química , Heparitina Sulfato/química , Ácido Hialurônico/química , Conformação Proteica , Solventes/química , Fatores de Tempo
8.
RSC Adv ; 11(42): 25850-25857, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479431

RESUMO

Computer vision (CV) algorithms are widely utilized in imaging processing for medical and personal electronics applications. In sensorics CV can provide a great potential to quantitate chemosensors' signals. Here we wish to describe a method for the CV-assisted spectrofluorometer-free detection of common nitro-explosive components, e.g. 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT), by using polyaromatic hydrocarbon (PAH, PAH = 1-pyrenyl or 9-anthracenyl) - based bola-type chemosensors. The PAH components of these chemical bolas are able to form stable, bright emissive in a visual wavelength region excimers, which allows their use as extended matrices of the RGB colors after imaging and digital processing. In non-polar solvents, the excimers have poor chemosensing properties, while in aqueous solutions, due to the possible micellar formation, these excimers provide "turn-off" fluorescence detection of DNT and TNT in the sub-nanomolar concentrations. A combination of these PAH-based fluorescent chemosensors with the proposed CV-assisted algorithm offers a fast and convenient approach for on-site, real-time, multi-thread analyte detection without the use of fluorometers. Although we focus on the analysis of nitro-explosives, the presented method is a conceptual work describing a general use of CV for quantitative fluorescence detection of various analytes as a simpler alternative to spectrofluorometer-assisted methods.

9.
Carbohydr Polym ; 252: 117204, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183639

RESUMO

Chitin is the second most abundant biopolymer and functions as the main structural component in a variety of living organisms. In nature, chitin rarely occurs in a pure form, but rather as nanoorganized chitin-proteins, chitin-pigments, or chitin-mineral composite biomaterials. Although chitin has a long history of scientific studies, it is still extensively investigated for practical applications in medicine, biotechnology, and biomimetics. The complexity of chitin has required the development of highly sensitive analytical methods for its identification. These methods are crucial for furthering disease diagnostics as well as advancing modern chitin-related technologies. Here we provide a summary of chitin identification by spectroscopic (NEXAFS, FTIR, Raman, NMR, colorimetry), chromatographic (TLC, GC, HPLC), electrophoretic (HPCE), and diffraction methods (XRD, WAXS, SAXS, HRTEM-SAED). Biochemical and immunochemical (ELISA, immunostaining) methods are described with respect to their medical application. This review outlines the history as well as the current progress in the analytical methods for chitin identification.


Assuntos
Quitina , Cromatografia/métodos , Eletroforese/métodos , Imunoensaio/métodos , Análise Espectral/métodos , Animais , Quitina/química , Quitina/ultraestrutura
10.
Int J Biol Macromol ; 162: 1187-1194, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615216

RESUMO

Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary. The presence of chitin in this species was confirmed using special staining, a chitinase test, FTIR, Raman and NEXAFS spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). In contrast to the case of marine sponges, chitin in O. rotunda has been found only within its holdfast, suggesting a role of chitin in the attachment of the sponge to the hard substratum. Isolated fibrous matter strongly resemble the shape and size of the sponge holdfast with membrane-like structure.


Assuntos
Quitina/química , Quitina/metabolismo , Poríferos/química , Poríferos/metabolismo , Animais
11.
Nanomaterials (Basel) ; 10(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069874

RESUMO

One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO2 nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO2 nanotubes were fabricated on VT1-0 titanium foil via a two-step anodization at 20 V using NH4F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1-0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO2 nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO2 nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO2 layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair.

12.
Biomaterials ; 228: 119557, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678844

RESUMO

Glycosaminoglycan (GAG)-based, biohybrid hydrogels offering far-reaching control over their physical and biomolecular signaling properties have been successfully used in various cell and tissue culture applications. To explore the suitability of the materials for in vivo use, we herein studied the host reaction to in situ-assembling star(PEG)-GAG hydrogel variants upon subcutaneous implantation in immunocompetent C57BL/6J mice for up to 28 days. Specifically, we investigated the immune reaction and the angiogenic response to hydrogels with systematically varied cytokine functionalizations, physical network (and mechanical) properties, cell adhesiveness, and enzymatic degradability. The GAG-based hydrogel elicited only minor foreign body reaction with low immune cell infiltration and collagen deposition compared to similarly implanted medical grade silicone. Adjusting of the physical properties, biofunctionalization, and degradability allowed to program the host response from nearly no degradation and infiltration to fast integration of the gel scaffolds into the tissue within days. The results demonstrate that foreign body reactions and starPEG-GAG hydrogel tissue integration can be effectively controlled by defined adjustments of the hydrogel system, suggesting the in situ-assembling materials as safe and effective for in vivo tissue engineering applications.


Assuntos
Glicosaminoglicanos , Hidrogéis , Animais , Colágeno , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis , Engenharia Tecidual
13.
Biomater Sci ; 8(1): 101-108, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31674601

RESUMO

Multiphasic in vitro models with cross-scale heterogeneity in matrix properties and/or cellular composition can reflect the structural and compositional complexity of living tissues more faithfully, thereby creating new options for pathobiology and drug development studies. Herein, a new class of tunable microgel-in-gel materials is reported that build on a versatile platform of multifunctional poly(ethylene glycol)-heparin gel types and integrates monodisperse, cell-laden microgels within cell-laden bulk hydrogel matrices. A novel microfluidic approach was developed to enable the high-throughput fabrication of microgels of in situ adjustable diameters, stiffness, degradability and biomolecular functionalization. By choosing structure and composition of the microgel and the bulk gel compartments independently, our microgel-in-gel arrangements provide cross-scale control over tissue-mimetic features and pave the way for culture systems with designed mesoenvironmental characteristics. The potentialities of the introduced approach are exemplarily shown by creating a reductionistic in vitro model of vascularized prostate cancer tissue.


Assuntos
Microgéis/química , Neoplasias da Próstata/patologia , Engenharia Tecidual/métodos , Humanos , Hidrogéis , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos
14.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623238

RESUMO

Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms "lose" large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine.


Assuntos
Quitina/química , Quitina/isolamento & purificação , Aranhas/química , Animais , Fracionamento Químico , Micro-Ondas , Muda , Análise Espectral
15.
Mar Drugs ; 17(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658704

RESUMO

Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.


Assuntos
Organismos Aquáticos/química , Quitina/química , Portadores de Fármacos/química , Poríferos/química , Tirosina/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Quitina/isolamento & purificação , Citoesqueleto/química , Compostos de Decametônio/administração & dosagem , Portadores de Fármacos/isolamento & purificação , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/isolamento & purificação , Isoxazóis/química , Isoxazóis/isolamento & purificação , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Poríferos/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Tirosina/química , Tirosina/isolamento & purificação
16.
Macromol Biosci ; 19(11): e1900226, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31549786

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) poses an ongoing challenge for clinicians and researchers. Currently, there is a lack of preventative measures available for at-risk patients undergoing tooth extractions, especially those with prior bisphosphonate treatment due to osteoporosis or bone metastasis diagnoses. Here, these issues are addressed using a preventative tissue engineering strategy against MRONJ development. This study evaluates the efficacy of a poly(ethylene glycol)-heparin hydrogel as a tool for the delivery of arginylglycylaspartic acid (RGD) and recombinant human bone morphogenic protein-2 (rhBMP-2). Three groups of skeletally mature rats each receive two doses of intravenous zoledronic acid prior to surgery and undergo extraction of the right first mandibular molar with gingival closure. Experimental groups either have the sockets left empty, filled with hydrogel minus rhBMP-2, or filled with hydrogel plus rhBMP-2. Eight weeks postoperatively specimens are analyzed using radiological, histological, and scanning electron microscopy (SEM) techniques. µCT analysis shows increased bone formation with hydrogel/rhBMP-2 delivery compared to the empty socket. Hydrogel-treated groups display increased presence of osteocytes and increased osteoclastic action compared to the empty sockets. These results represent the first step toward improved delivery of rhBMP-2 and a potential MRONJ preventative for patients undergoing bisphosphonate treatment.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Proteína Morfogenética Óssea 2/farmacocinética , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Fator de Crescimento Transformador beta/farmacocinética , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Proteína Morfogenética Óssea 2/administração & dosagem , Células Cultivadas , Quimioprevenção/métodos , Preparações de Ação Retardada/administração & dosagem , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Hidrogéis/farmacocinética , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Fator de Crescimento Transformador beta/administração & dosagem
17.
Mar Drugs ; 17(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813373

RESUMO

Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields.


Assuntos
Quitina/isolamento & purificação , Poríferos/química , Animais , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/isolamento & purificação , Quitina/análise , Quitina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tirosina/análogos & derivados , Tirosina/análise , Tirosina/química , Tirosina/isolamento & purificação
18.
Mar Drugs ; 16(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461501

RESUMO

Sponges (Porifera) are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D) architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides(Heteroscleromorpha: Poecilosclerida: Mycalidae) collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR), electrospray ionization mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides. We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.


Assuntos
Organismos Aquáticos/metabolismo , Quitina/química , Quitina/metabolismo , Poríferos/química , Poríferos/metabolismo , Animais , Organismos Aquáticos/química , Materiais Biocompatíveis/química , Biomimética/métodos , Quitinases/metabolismo , Microscopia Eletrônica de Varredura/métodos , Esqueleto/química , Esqueleto/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Engenharia Tecidual/métodos
19.
Int J Biol Macromol ; 112: 1021-1028, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29452181

RESUMO

Among marine demosponges (Porifera: Demospongiae), only representatives of the order Verongiida have been recognized to synthetize both biologically active substances as well as scaffolds-like fibrous skeletons made of structural aminopolysaccharide chitin. The unique 3D architecture of such scaffolds open perspectives for their applications in waste treatment, biomimetics and tissue engineering. Here, we focus special attention to the demosponge Pseudoceratina purpurea collected in the coastal waters of Singapore. For the first time the detailed description of the isolation of chitin from the skeleton of this sponge and its identification using diverse bioanalytical tools were carried out. Calcofluor white staining, FTIR analysis, electrospray ionization mass spectrometry (ESI-MS), SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of alpha-chitin in the skeleton of P. purpurea. We suggest that the discovery of chitin within representatives of Pseudoceratinidae family is a perspective step in evaluation of these verongiid sponges as novel renewable sources for both chitin and biologically active metabolites, which are of prospective use for marine oriented biomedicine and pharmacology, respectively.


Assuntos
Quitina/química , Poríferos/química , Animais , Quitina/isolamento & purificação , Quitina/ultraestrutura , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Am Chem Soc ; 139(30): 10184-10187, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28682611

RESUMO

Two-photon excitation provides high spatial resolution in three dimensions of the corresponding chemical or physical processes, allowing submicrometer structuring in stereolithography and three-dimensional (3D) microfabrication. While studying two-photon structuring applications, we observed an undescribed phenomenon in photochemistry that dictates reactivity of maleimide groups in two-photon mode. A low-absorbance transition formerly ignored in classical photochemistry has been found for maleimides. This transition was assigned to symmetry-breaking donor-acceptor complex formation, which revealed a formally forbidden pathway in [2+2] cycloaddition reactions of maleimide moieties. This synthetic pathway allowed for the creation of hydrogel materials under physiological conditions at low laser excitation energy (0.1 J/cm2 at 800 nm) without the use of photoinitiators, which makes it truly two-photon click chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...